This week, the National Institutes of Health (NIH) announced funding for the next phase of its Tissue Chip for Drug Screening program. In this phase, $17 million will be distributed to 11 projects that will refine and integrate existing 3-D human tissue chips (developed in the first phase of the program) into a system that mimics the physiology of the human body.  The resulting “human body-on-a-chip” will be used to predict the toxicity of potential drugs or other biological agents, ultimately with much greater relevance, accuracy, and efficiency than is possible with traditional animal test procedures.  From the NIH press release:

“The development of tissue chips is a remarkable marriage of biology and engineering, and has the potential to transform preclinical testing of candidate treatments, providing valuable tools for biomedical research,” said NIH Director Francis S. Collins, M.D., Ph.D.

Among the projects funded are a neurovascular-unit-on-a-chip (Vanderbilt), a female reproductive tract system (Northwestern University), a micro-physiological model of metastasis (MIT), and a human cardio-pulmonary-system-on-a-chip (Harvard University).  Read more about these and seven other projects here.

The Tissue Chip for Drug Screening program is a collaboration between NIH, the Defense Advanced Research Projects Agency (DARPA) and the US Food and Drug Administration (FDA), coordinated by the National Center for Advancing Translational Sciences (NCATS).

For a deeper dive into the potential of microphysiological systems, see the September 2014 issue of Experimental Biology and Medicine, especially the opening article by John Wikswo, “The relevance and potential roles of microphysiological systems in biology and medicine” (open access).