Cultivated neural tissue (photo credit: Michael Schwartz, University of Wisconsin-Madison)

Cultivated neural tissue (photo credit: Michael Schwartz, University of Wisconsin-Madison)

What sounded like science fiction just a couple of decades ago is a rapidly advancing reality today: in 2015, a number of research teams developed and refined stem cell-derived “brain organoids” that are already being used to model neurological diseases and test potential drug treatments.

Miniaturized human brain organoid grown from re-programmed adult skin cells (photo courtesy of Ohio State University)

Miniaturized human brain organoid grown from re-programmed adult skin cells (photo courtesy of Ohio State University)

We blogged about some of these studies in August 2015, and NIH Director Dr. Francis Collins featured brain organoids in a blog column in September. The Wall Street Journal’s science columnist, Shirley Wang, has an informative round-up of stem cell-based neurological disease models in her recent column.

In its year-end “breakthrough” round-up, MIT’s Technology Review magazine names brain organoids as one of the top technology breakthroughs of 2015. As the article explains, “What makes cerebral organoids particularly useful is that their growth mirrors aspects of human brain development. The cells divide, take on the characteristics of, say, the cerebellum, cluster together in layers, and start to look like the discrete three-dimensional structures of a brain. If something goes wrong along the way—which is observable as the organoids grow—scientists can look for potential causes, mechanisms, and even drug treatments.”

In addition to modeling diseases and testing potential treatments, these brain organoids can also be used to more efficiently and affordably assess other chemicals – such as those in pesticides or industrial agents – for neurotoxicity in humans.